
Complying
with the PCI
CPoC Standard

Get your mobile
contactless payment
application to market
faster with Zimperium

Introduction
Demand for contactless payments continues to surge as both consumers and merchants seek faster,
more convenient, and safer methods to conduct transactions. Advances in the field have turned
commercial off-the-shelf (COTS) phones and tablets into fully enabled, contactless mobile point-of-sale
(mPOS) systems.

These Contactless Payments on COTS (CPoC) applications accept payments using the NFC interface in
standard mobile devices, without requiring additional hardware.

To ensure payment security under this emerging technology, the PCI Security Standards Council
published the CPoC Standard. In addition to detailing app security requirements, it includes a stringent
testing and certification program.

Zimperium’s application protection solutions, zShield and zKeyBox, help developers and vendors secure
their payment apps and comply with key elements of the CPoC Standard.

1

The PCI CPoC guidelines cover multiple areas from general
security components, to distinct security requirements for
the application software, backend systems, and contactless
kernel. This white paper takes an in-depth look at the
requirements specifically related to protection of the
application code and the use of white-box cryptography to
secure encryption keys, which fall under sections 2.1 and 2.2
of the CPoC Standard. It explains the concepts and provides
details on how Zimperium solutions help you meet these
and other requirements.

WHAT YOU'LL LEARN

1

https://listings.pcisecuritystandards.org/documents/Contactless_Payments_on_COTS-Security_and_Test_Requirements-v1.0.pdf

2

CPoC Standard section 2.1:
Tamper and reverse- engineering protection
A primary requirement of the CPoC Standard, defined in section 2.1, is protecting the CPoC application
from tampering and reverse engineering. Almost every attack on a software application begins with
reverse engineering its code to understand the structure and logic, and identify avenues of attack.

For example, experienced hackers can look at assembly language code and recognize that it is performing
cryptographic operations.

Once the inner workings of the target application are understood, attackers can tamper with the code,
circumvent security restrictions, lift transaction-related code to perform unauthorized transactions outside
of the application, change app behavior, and use other methods to steal secret keys, personal account
data, payment card and PIN details, and funds.

Since the application may be installed on a compromised or untrusted device, the software must contain
internal protections including, but not limited to, the use of code obfuscation, internal integrity checks for
code and processing flows, and code segment encryption.

zShield is a comprehensive solution that adds tamper-resistance, anti-reverse engineering, and
obfuscation characteristics to software applications on all major platforms including Android and iOS. Its
security features ensure not just compliance with the CPoC Standard, but also strong application-level
protection against many software attacks.

In the next section, we examine the specific requirements and how Zimperium can help you achieve
compliance and accelerate your time to market.

Checker 1

Interval 1

Interval 2

Checker 2 Checker 3 Checker 4 Checker 5

Interval 3

Interval 4

Interval 5

Interval 6

Interval 7

Interval 8

Checker 6 Checker 7 Checker 8

Integrity protection using checksum checkers

One of zShield’s many anti-tampering
measures is integrity checking, which inserts
thousands of small, overlapping pieces of code
called checkers. During runtime, each checker
tests whether a particular segment of the
executable has been tampered with. If
tampering is detected, automatic security
measures are triggered.

3

Section 2.1 Requirements
Section 2.1 of the CPoC Standard lists eight specific tamper-resistance requirements developers must
implement for approval.

Explanation and complianceReq. Description

2.1.1 Documentation must exist on how tamper
resistance is achieved for each of the
supported platforms of the CPoC application.

Zimperium provides comprehensive documentation on the code obfuscation and
anti-tampering methods used by zShield so that CPoC application development
teams can readily comply with this requirement.

2.1.2 The CPoC application must be protected by
tamper-resistance measures to protect its
code, including any code involved in the
use or security of cryptographic keys.

zShield transforms application source code by applying code and string literal
obfuscation, code and data integrity protection, debugger detection, binary
packing, and other application defense mechanisms.

The end result is an application that looks and works the same as the original, but
internally its code contains layers of self-defense mechanisms to prevent analysis
and tampering.

For additional cryptographic key protection, zKeyBox provides the highest
available level of security for handling keys in software-only environments,
protecting keys at all stages of their lifecycle.

2.1.3 The attestation component must have
the east privilege required to access
proprietary APIs to determine the COTS
platform state.

zShield secures the attestation component or any code interacting with it, however,
sound design principles must govern privilege implementation and handling. Any
tools used to obtain attestation information and measurements of the execution
platform must not require privilege escalation and should successfully run with the
least privilege applied to the attestation component.

2.1.4 Attestation code implemented in the CPoC
application must be protected by tamper-
resistance features.

The strength of attestation code protections necessarily depends on whether or not
the CPoC application developer has the source code of the attestation component.
If so, the full power of zShield’s advanced obfuscation and anti-tampering
mechanisms can be applied.

If the attestation process relies on a pre-compiled third-party toolkit or library, Code
Protection still provides a number of features to help meet the attestation code
protection requirement, such as signature checking of shared libraries, verification
of libraries calling application functions, and binary packing (encryption of code
segments) of the pre-compiled libraries.

2.1.5 The contactless kernel of the CPoC
application must be protected by tamper-
resistant methods to guarantee its integrity.

The contactless kernel, which is the software that processes the contactless
transactions, must be strictly protected, including any configuration files, optional
settings, and payment brands public keys.

zShield allows you to split the application code in logical modules and apply
different levels of security and sets of protection features to each module. This
means that you can optimize security and performance, for example, applying no or
low level protection to basic UI rendering routines and increasing the security for
core components, such as the contactless kernel. zShield also adds extra layers of
protection against code-lifting.

2.1.6 The contactless kernel operation must be
immutable, such that transaction processing
cannot be interfered by other applications or
users on the COTS device.

When the contactless kernel code is protected with zShield and zKeyBox, any
attempt to interfere with the contactless kernel operation from outside will be
blocked. For example, integrity checking mechanisms detect and stop a hacker
from changing a single bit of application code. Similarly, attempts to impersonate
the user and hijack communications are thwarted as the network module is
protected against reverse engineering and cryptographic keys are never
exposed.

2.1.7 The CPoC application must implement
methods for detecting a number of listed
threats, including if the device has been
rooted and jailbroken, and report them to a
back-end monitoring system.

zShield provides the ability to execute code in response to certain types of
threats, such as when a rooted or jailbroken device is detected. Developers can
leverage this callback mechanism to implement a threat reporting system in the
CPoC application that reports any threats or attempts to attack the application.

2.1.8 A CPoC application that fails tamper checks
must be prohibited from accepting account
data.

zShield includes real-time intrusion detection and response. When a tampering
attempt is identified, it can automatically shut down the application to prevent it
from accepting account data. Alternatively, a custom callback function can be
defined to prevent the acceptance of account data without fully disabling the
app.

4

CPoC Standard section 2.2:
White-box cryptography
Of all the CPoC Standard requirements, the white-box cryptography section seems to generate the most
questions. White-box cryptography provides developers software-based cryptographic security in open
and untrusted execution environments, where secure hardware components are not available or
acceptable.

Traditionally, protection of cryptographic operations is achieved by special-purpose tamper-resistant
hardware components, such as secure enclaves (SE) and trusted execution environments (TEE). Although
these types of internal hardware modules are increasingly common in COTS devices, they are not universal.
Moreover, on some devices, their design or features do not allow a sufficiently secure or straightforward
implementation for a CPoC application.

The PCI guidelines state that white-box cryptography can be used as a substitute for device-dependent
cryptography where the underlying hardware support is lacking. In fact, software-only implementations
that rely solely on white-box cryptography can qualify for a PCI Letter of Approval. This means that by using
white-box technology alone, CPoC developers can skip customizing their application to support hardware-
backed cryptography for each type of device.

5

What is white-box cryptography?
The white-box model assumes that the internal workings of an algorithm are going to be visible and modifiable.
This means that a software-only implementation of cryptographic algorithms must be sufficiently secure against
attack such that the secret cryptographic keys are protected and hidden at all times, at rest and at runtime. The
CPoC Standard specifically defines white-box cryptography as “a method used to obfuscate a (mostly symmetric)
cryptographic algorithm and key with the goal of making determination of the key value computationally
complex.”

For developers and vendors of contactless or mPOS based payment systems on COTS, the number and stringency
of the security requirements expected by the CPoC Standard can quickly become overwhelming. For most, in-
house development of a sufficiently secure white-box cryptography module is impractical if not impossible,
especially those aiming to get to market swiftly. White-box cryptography is complex and requires significant
cryptographic expertise and years of research and development to get right.

zKeyBox is an industry-leading white-box cryptography solution, providing the ability to use AES, RSA, ECC, 3DES,
CMAC, RetailMAC (ISO/IEC 9797-1), and other ciphers with the highest level of security. The strength of Zimperium
products is continuously tested by top third-party penetration testing and security labs.

Conceptual overview of
white-box cryptography Standard implementation

of a cryptographic algorithm

Cryptographic algorithm

Key

Output

Input

White-box implementation
of a cryptographic algorithm

Input

Output

White-box cryptography provides the
equivalent functionality of standard
algorithms without revealing the
intermediate values. In a “standard”
cryptographic implementation, the keys
and execution logic are clearly
distinguishable and easy to tamper with.
In a white box implementation, the
internal data and execution flow are
obscured and inseparable—keys cannot
be easily extracted and any attempted
code modifications can break the entire
executable.

6

Section 2.2 Requirements
White-box cryptography offers developers and vendors several advantages over hardware-based
cryptography, including ease of deployment and upgrade, portability, and cross-platform support.
However, the strength of its security depends on following strict implementation protocols. PCI has
defined eight security requirements that applications using white-box cryptography must meet.

Explanation and complianceReq. Description

2.2.1 Cryptographic methods protected primarily
by software-based methods must be
protected against analysis and abuse.

The CPoC Standard details specific expectations regarding secure key
generation, how the software-based protection should be implemented, and
what attacks it must be ready to withstand.

zKeyBox is designed and built from the ground up to be robust against
analysis, tampering, side-channel attacks and reverse engineering. Its unique
implementation encodes not only the cryptographic keys, but also the
processing logic, which makes it extremely difficult for an attacker to
determine what the library does.

2.2.2 The robustness of the software-based
protection mechanisms must be evaluated, at
least annually, against current attack scenarios
and vectors.

This requires the ongoing involvement of security labs, researchers, and
payment domain security experts, to test the solution and produce analysis
documentation of potential threats including their execution difficulty, likelihood,
mitigation techniques, and potential impact.

zKeyBox and our own team of researchers constantly monitor and analyze its
implementation in the context of existing and emerging attack vectors.
Documentation required by the PCI or other entities is available.

2.2.3 The cryptographic material used in software-
based protection mechanisms, such as
white-box keys, entropy seeds and nonces,
must be changed periodically to prevent
cryptographic key compromise.

This provision requires the application developer to change the white-box
implementation and cryptographic keys at least once a month to minimize the
risk of breach. The simplest way to achieve this is to release an updated
version of the application every month.

zKeyBox’s incorporation of strong cryptographic diversification ensures keys
are never reused and internal data is encoded differently per delivery. SKB
also makes it easy to update your cryptographic implementation monthly
without changing the API.

2.2.4 Retired cryptographic material used in
software-based protection mechanisms
must be securely deleted no later than six
months after initial deployment of CPoC
application versions using those keys.

Once a different edition of zKeyBox is deployed, existing key material
is upgraded or reimported via the library’s API. Retired keys can then
be deleted. Moreover, even if old keys were leaked, they would no
longer work with the updated SKB instances.

2.2.5 The cryptographic material used in software-
based protection mechanisms must not be
used directly for account data or attestation
data encryption.

Each key used in white-box cryptography must be used for one purpose only, and
they must not be used directly for the encryption of account data or for directly
securing any other communications that are part of the overall solution security,
such as attestation data.

While much of this requirement depends on sound cryptographic architecture,
zKeyBox ensures that cryptographic material used to protect keys cannot be used
to encrypt data. It also has an internal security feature that prevents one type of key
to be used in other contexts. For example, it does not allow a key used for
decryption to be used for unwrapping of other keys.

7

Section 2.2 Requirements (continued)

2.2.6 Cryptographic keys that are protected
primarily with software-based methods
must be unique per CPoC application
version and instance of the OS store.

To achieve this, each version of the application for each OS store type
(such as Apple’s App Store® and Google Play™) and geographic region must be
unique. This involves creating and deploying a key provisioning system that allows
effective and secure generation and distribution of keys for each unique global
market.

zKeyBox’s diversification feature lets you link a different edition of the library, with
a different binary footprint, into individual editions of applications for separate
geographic markets. Moreover, it includes another powerful capability, device
binding, which allows you to encode internal secrets differently depending on the
device or operating system the application runs on.

2.27 Cryptographic algorithms and keys used in
software-based protection mechanisms
must meet the security requirements
of acceptable cryptography.

Industry-recognized standard cryptographic algorithms, key lengths, and other
implementation methodologies should form the basis for any security services
used in the solution. These criteria are described in section 1.3 of the CPoC
Standard.

zKeyBox supports a wide variety of industry-accepted cryptographic algorithms
and key lengths, including 128-bit, 192-bit, and 256-bit AES, 2048-bit RSA, ECC
with P-256, P-384, and P-521 curves, SHA-256 and SHA-512, 3DES, DH,
ECDH, ECDSA, HMAC, CMAC, RetailMAC (ISO/IEC 9797-1), and more.
zKeyBox even provides a white-box implementation of the TLS protocol
commonly used in network communication of payment systems.

2.2.8 Cryptographic keys used in software-based
protection mechanisms must meet the
established key management requirements.

Cryptographic keys must be managed securely using recognized industry
practices throughout their cryptographic lifecycle, including generation,
distribution, storage, replacement, revocation, deletion, and accountability. These
criteria are described in section 1.4 of the CPoC Standard.

zKeyBox ensures that keys are always encrypted and encapsulated into secure
data objects whose plaintext content cannot be read, not even by the application
itself. This is true at all stages of the key lifecycle, including generation, loading,
processing, and exporting to storage.

Explanation and complianceReq. Description

8

Additional CPoC Compliance Support
Zimperium solutions aid in compliance with multiple other sections of the CPoC Standard.

Secure
application

CPoC Standard section 2.5 defines a secure
application to be one that it is “designed,
developed, and maintained in a manner that
protects the integrity of payment transactions
and the confidentiality of all sensitive data
collected, stored, or processed in association
with payment transactions.”

Secure
provisioning

CPoC Standard section 2.6 concerns making
sure that merchants only install
an authentic version of the application.

Account data
encryption

Section 2.9 of the CPoC Standard is concerned
with securing account data.

Contactless
kernel
security

The contactless kernel should not expose
security data, such as payment brands keys,
internal or intermediate values, and card tags,
to any other process or application.

While the majority of the provision deals with secure coding practices and
documenting security measures, Intertrust aids in compliance with several of the
individual requirements.

Zimperium solutions harden the application against tampering, side-channel
attacks, fault injection, and reverse-engineering, providing developer
documentation on methods used. zKeyBox also ensures that secret or private
cryptographic keys are never exposed as cleartext in the COTS memory.

Zimperium solutions support compliance with this specification through several
mechanisms.

• Application integrity checking ensures that no modifications have been made to
the mPOS application since it was built by the development team. If tampering is
detected, the application will not run on the merchant’s device.

• zShield includes safeguards that protect the integrity of the Android APK
package. It also prevents unauthorized re-signing and distribution of apps in the
Mach-O file format used by iOS.

• zKeyBox supports multiple methods, such as key unwrapping and computing a
shared secret, that facilitate secure provisioning of cryptographic keys on first
execution.

While much of it focuses on best practices for encrypting data and managing
encryption keys, zKeyBox has built-in safeguards that can aid in compliance. For
example, it employs industry-recognized key ciphers in a secure manner and
prevents key discovery and re-use.

zKeyBox makes sure that keys and intermediate values are never exposed in
the clear.

Explanation and complianceReq. Description

9

Zimperium helps you comply with
the CPoC Standard
Zimperium provides advanced application protection and white-box cryptography solutions that protect
apps with sensitive information, thwart attacks, and help you comply with industry regulations, including
the PCI CPoC Standard.

Code Protection
zShield embeds advanced security defenses into your applications, enabling them to run securely in zero-
trust environments. It uses multiple methods to prevent tampering and reverse engineering including
advanced code obfuscation, jailbreak/rooting detection, and real-time intrusion detection and response.

KEY BENEFITS
• Protect your applications

against reverse-engineering
and tampering

• Secure encryption keys at all
times even on compromised
devices

• Comply with CPoC white-
box requirement without
specialized development
work

• Meet CPoC penetration
testing requirements

• Accelerate your time to
market

Secure Key Box
zKeyBox is a state-of-the-art white-box cryptography library
that keeps your cryptographic keys protected within the app
code, even during runtime, and even if a device is rooted or
jailbroken. Extremely easy to integrate and use, it provides an
extensive set of high-level classes and methods for operating
with the most popular cryptographic algorithms across
multiple platforms in the mobile, desktop, cloud, and
embedded space.

Partner with Zimperium
Zimperium helps the world’s leading fintech vendors build and
deliver the most secure and innovative financial applications.
Our team has worked hand-in-hand with CPoC developers
and accredited testing labs and can help guide you through
the process.

To learn more about Zimperium's Mobile Application Protection
Suite (MAPS) that provides protection across the entire

application lifecycle, visit us here:

 https://www.zimperium.com/mobile-app-protection

https://www.zimperium.com/mobile-app-protection

10

About Zimperium
Zimperium is a global leader in mobile device and app security, offering real-time, on-device protection
against both known and unknown threats on Android, iOS and Chromebook endpoints. The company
was founded under the premise that the then current state of mobile security was insufficient to solve
the growing mobile security problem. At the time, most mobile security was a port from traditional
endpoint security technologies.

Zimperium recognized mobile devices had unique characteristics needing a completely new approach.
The team set to work to reimagine how to protect mobile devices and developed the award winning,
patented z9 machine learning-based engine. z9 protects mobile devices from device, network, phishing
and application attacks. And as first envisioned, z9 has detected 100% of zero-day mobile exploits in the
wild without requiring an update or suffering from the delays and limitations of cloud-based detection
—something no other mobile security provider can claim.

Sources
1 Payment Card Industry (PCI) Contactless Payments on COTS (CPoC™) Security and Test Requirements, Version 1.0, PCI Security Standards Council, December 2019

Learn more at: zimperium.com
Contact us at: 844.601.6760 | info@zimperium.com
Zimperium, Inc
4055 Valley View, Dallas, TX 75244

© 2024 Zimperium, Inc. All rights reserved.

	Blank Page

