
Understanding & Protecting
Against Cryptographic Key
Attacks

1

Understanding & Protecting Against Cryptographic Key Attacks

Contents
Executive Summary
1 The Challenge of Keeping Cryptographic Keys Safe

1.1 Examples of Cryptographic Key Attacks

Volkswagen Remote Key System

Tesla Mobile Application

Nintendo Wii Console

1.2 How Adversaries Attack Cryptographic Keys

Brute-Force Attack

Theoretical Loopholes and Implementation Errors

Static Analysis

Dynamic (or Memory) Analysis

Eavesdropping on Network Communication

Side-Channel Attacks

2 Methods for Protecting Cryptographic Keys
2.1 Hardware-Based Security

2.2 Keystores

2.3 White Box Cryptography

Academic Work on White Box Cryptography

How White Box Cryptography Works

Choosing the Right Key Protection Technique

3 Zimperium's zKeyBox
3.1 Main Features

3.2 Security Aspects

Encrypted Domain

Obfuscation

Diversification

Protection against White Box Attacks

4 Select Use Cases
Tokenized EMV Payment Solution

Digital Rights Management System

5 Next Steps

1
2
3
3

3

3

4
4

4

4

5

5

5

6
6

7

7

7

8

8

9
10

10

10

11

11

11

12
12

12

13

1

Executive Summary
In fact, in many situations, a single key may protect many
different pieces of data, and so securing those keys is of
paramount importance. Unwarranted extraction of a key from a
cryptographic module essentially nullifies the entire security
system. The consequences of a compromised key can include
financial loss, liability, regulatory fines and impact to brand
reputation.

The overview of common techniques hackers use to discover
keys will be provided, such as the use of static and dynamic
analysis, network eavesdropping, and side-channel attacks. In
addition, the established methods for fighting these attacks will
also be discussed, and the concept of white box cryptography
will be explained.

Finally, this white paper will focus on Zimperium’s industry-
leading solution to protecting cryptographic keys in software —
zKeyBox, a white box cryptography library that provides a
secure implementation of the standard cryptographic algorithms
that completely hides the cryptographic keys in the binary
code and makes key extraction attempts extremely difficult.

In past decades, data security was identified with massive
physically secure data centers and corporate controlled
computing assets. Today’s reality is that many software
applications are running on unmanaged devices in vulnerable
and targeted networks. Adversaries can easily gain physical
access to many devices that need to protect internal secrets,
including mobile phones, IoT devices, automobiles, set-top
boxes, and medical equipment. Even in a well-secured corporate
setting, the perimeter is increasingly hard to define and defend
because not all devices on a corporate network are adequately
managed or secure, (e.g. BYOD). Widespread malware
deployments make it likely that devices, no matter how well
managed, are subject to infection. Consequently, there is a high
risk that adversaries can easily examine and attack these kinds
of devices.

In this paper, we will focus on one particular security risk that is
inevitable in today’s open and insecure digital environments —
namely, the security of cryptographic keys. As will be further
explained, a cryptographic key is the cornerstone concept of
most security schemes used on billions of devices all over the
world. While cryptography is designed to ensure protection of
confidential data, it does not automatically eliminate the risk of
attacks on such data because cryptographic security relies on
the security of keys. In reality, cryptography merely shifts the
problem of protecting data to protecting keys.

Understanding & Protecting Against Cryptographic Key Attacks

77%

Understanding & Protecting Against Cryptographic Key Attacks

2

The Challenge of
Keeping Cryptographic
Keys Safe

While those that use cryptographic
algorithms generally acknowledge the
need to protect their secret data, the
necessity to protect the cryptographic
keys themselves is often overlooked. A
misguided assumption is that the secret
cryptographic keys are not accessible to
the adversary; however, that is not the
case. In the vast majority of cases,
cryptographic algorithms expose their
keys in the clear to the execution
environment in one way or another. There
are many ways how the keys can be
obtained, as explained later in the “How
Adversaries Attack Cryptographic Keys”
section. Therefore, one of the main points
of emphasis is that it is absolutely
critical to protect cryptographic keys.

Cryptography is the foundation of data
security in digital assets and services used
by millions every day. It enables secure
communication, strong authentication,
and protection of confidential information.
Bank cards, ATMs, Pay TV, cloud
computing, online payments, and
connected cars are just a few examples of
modern systems that would be highly
vulnerable and impractical without the use
of cryptography.

At the core of cryptography lies the
concept of a key — a small piece of
information that determines the output of
cryptographic operations (encryption,
decryption, signing, verification, etc.).
Having access to the right key opens the
door to all the secret data protected by that
particular cryptographic algorithm and that
key.

If hackers were to obtain cryptographic
keys, they could potentially eavesdrop on
secure communication, spoof a user,
manipulate network transactions, and/or
infiltrate the system to exfiltrate
confidential information. The effects of
broken cryptographic modules and stolen
keys can be significant for governments,
financial institutions, automotive
manufacturers, healthcare organizations,
and gaming distributors. Financial loss,
damaged brand reputation, exposure to
liability, and sometimes even loss of
human life can all result from the failure to
ensure adequate protection of
cryptographic keys.

Figure 1: Fundamentals of Cryptography

3

Understanding & Protecting Against Cryptographic Key Attacks

The following are some of
the well-known attacks on
large organizations
involving discovery of
cryptographic keys.

Examples of
Cryptographic Key
Attacks

Volkswagen Remote Key System
In 2016, a team of computer scientists published a paper on a flaw that applies to practically
every car Volkswagen has sold since 1995. By using an inexpensive and readily available
piece of radio hardware, they could intercept signals from a victim’s key fob, discover the
secret keys used, and then clone the original remote1.

Tesla Mobile Application
In 2016, a team of security experts demonstrated a vulnerability that allowed them to gain full
control over a Tesla Model S by overcoming the security measures of the Tesla mobile
application. The application is authenticated using a secret key stored locally by the
application. Since the key was stored in the clear, it became vulnerable to theft by malware on
a mobile device. The vulnerability was executed in practice by installing a malicious version of
the Tesla mobile application.

Nintendo Wii Console
In 2007, a hacker was able to obtain secret encryption keys used on the Nintendo Wii console
by exploiting a bug in the signature verification algorithm and compromising the keys that were
stored in the external GDDR3 RAM in unencrypted form. As a result, the anti-piracy measures
of the console were broken, allowing unsanctioned software to be installed and run on the Wii
hardware2.

4

Understanding & Protecting Against Cryptographic Key Attacks

low entropy . As a result, a key is likely to
stand out against the background of low-
entropy non-key data. The following figure
visualizes machine code in 2D, such that one
pixel represents one bit, and each column
represents 64 bits of sequential data (ordered
left to right). A human eye can quickly identify
a region characterized by high randomness,
which may indicate a cryptographic key. The
process of pinpointing of such regions can be
easily automatized.

Static analysis is one of the most effective
attacks if the hacker has access to the device
storage or any channel used to deploy the
executable code, and if the keys are stored
as cleartext.

Static Analysis
By analyzing the static machine code of a
software executable such as the binary
image in the device storage, hackers can
easily discover cryptographic keys if they are
stored in the clear. Identifying potential keys
in the code is made easier by the fact that
cryptographic keys are random sets of bits
exhibiting high entropy. In contrast, most
uncompressed machine code has relatively

6

Figure 2: Discovering High-Entropy Key Material Within the Binary Code

How Adversaries Attack
Cryptographic Keys

This section provides an overview
of the common methods used by
hackers to extract secret keys from
various systems. The focus is that
key extraction is a serious risk and
safeguarding your systems against
such attacks is a significant task.

 Brute-Force Attack
In a brute-force attack, the attacker tries a
huge number of inputs to see if one works.
For example, many password-cracking
algorithms (Brutus, RainbowCrack) work
this way, trying millions of common
passwords until one is found that works.
That is why you are always asked to pick
passwords with hard to remember
combinations of upper- and lower-case
digits, numbers, and special characters.

Usually, brute-force attacks are only
effective for breaking cryptographic
algorithms that deal with small key sizes.
With the industry’s latest standard crypto
algorithms, brute-force attacks are generally
unfeasible.

Theoretical Loopholes and
Implementation Errors
Threat actors might attempt to find
theoretical weaknesses or implementation
bugs in cryptographic algorithms or
protocols that would allow them to quickly
bypass the security protections inherent in
a particular algorithm or protocol. A classic
example of this is the man-in-the middle
attack against the Needham-Schroeder
Public-Key Protocol . This attack
demonstrated a fundamental weakness in
the protocol that enabled an unforeseen
attack to succeed. The Wired Equivalent
Privacy (WEP) protocol is another case
where a theoretical vulnerability was
discovered and published in a paper . A
more recent example that leveraged a
vulnerability in the OpenSSL cryptographic
software library was the notorious
Heartbleed vulnerability.

As demonstrated by these examples, even
well-established standards and systems are
subject to the risk of being attacked and
compromised.

3

4

5

5

Understanding & Protecting Against Cryptographic Key Attacks

Dynamic (or Memory) Analysis
While encrypting a key on a storage medium is a fairly simple procedure, hiding the key in device memory is much more complicated
because at some point, the key needs to be provided to a cryptographic algorithm as valid input. In most cryptographic libraries this is the
moment when the key is decrypted in the memory as plaintext and becomes susceptible to extraction. With the right set of tools, attackers
can dynamically analyze the memory and hijack cryptographic secrets during execution of the software. There are automated tools which are
readily available that can instantly discover secret keys in any arbitrary process running on a device7.

Eavesdropping on Network Communication
Secret keys should never be transferred over any network in unencrypted form, as this enables threat actors to easily exploit keys. From a
security point of view, the Internet should be viewed as a completely transparent ecosystem where hackers can potentially see all the data
you exchange with other endpoints. Consequently, it becomes absolutely clear that cryptographic keys and other secrets sent through the
Web must always be protected. The common practice is to encrypt all secrets before they are sent over the Internet, and never expose these
keys used for encrypting the secrets. There are established methods for agreeing on encryption keys on both endpoints without sending
them over the Internet, such as the Diffie-Hellman key exchange algorithm8.

Side-Channel Attacks
In these attacks, the attacker does not attempt to access the key directly in the device, but rather attempts to reconstruct the key from
indirect signals and the physiology of internal components in the device. For example, in some cases it is possible to reconstruct a key by
measuring the power consumption of a chip9.

In another example, the attacker injects faults into the algorithm by subjecting the hardware to extreme temperature and then observes the
behavior of the algorithm in order to reconstruct the key10.

Under certain circumstances, keys can be extracted from devices even when they are powered off. This type of side-channel attack relies on
memory retention that is common in most modern devices. Even after the device is powered down, the internal memory retains its contents
for seconds to minutes at normal operating temperatures, even if it is removed from a motherboard11. To execute the attack, a hard reboot of
the device is performed and a removable disk is then immediately used to boot a lightweight operating system, or in some cases the memory
modules are removed from the original system and quickly placed in a compatible machine. Further analysis can then be performed against
the information that was dumped from memory to find the cryptographic keys contained in it. Automated tools are now available to perform
this task for attacks against some popular encryption systems.

6

Understanding & Protecting Against Cryptographic Key Attacks

Methods for Protecting
Cryptographic Keys
In the previous section, we
explained the importance of
keeping cryptographic keys
hidden and safe — a fact that is
often ignored even by large
corporations. At the same time,
we showed that ensuring good
key protection is not an easy task
since there are a wide array of
techniques that hackers use to
attack cryptographic systems and
steal keys.

In this section, we outline the
main categories of
countermeasures against
discovery of cryptographic keys.

Hardware-Based Security
To deal with key protection challenges,
hardware-based security is commonly used
to provide strong protection for the keys on
devices. Some examples are hardware
security modules (HSM), trusted platform
modules (TPM), and trusted execution
environments (TEE). The security of these
systems relies on the fact that it is very
difficult and expensive for attackers to
reverse engineer a hardware module and
manipulate its internal data. Generally
speaking, hardware security systems can
be considered “black box models” because
their internal workings are essentially
hidden to the observer.

Although hardware-based approaches do
provide excellent security advantages,
there are also significant downsides:

• Hardware-based security adds cost
to a system. Manufacturers of
platforms might choose cost
sensitivity over the security risks of
compromised keys — security is
usually an afterthought.

• Vulnerabilities in hardware are difficult
and potentially expensive to mitigate.
Examples like Meltdown and Spectre12

illustrate that hardware and software
manufacturers might need to spend large
amounts of money and resources to issue
patches to fix vulnerabilities in existing
deployments.

• Different devices may contain different
hardware with varying functionality
that require complex logic in applications
built to run on a wide range of devices.

• As it was explained in the “Side-Channel
Attacks” section, hardware is not
immune to attacks. Clever approaches
such as differential power analysis can be
used to extract keys from hardware by
examining indirect patterns in signals
emanating from the hardware.

• There are business models which
preclude application developers from
using secure hardware on a device
even when it exists. Such is the case with
Apple iPhone, where although it has ARM
processors with the TrustZone extension,
third-party applications are generally not
allowed to use that functionality.

7

Understanding & Protecting Against Cryptographic Key Attacks

Keystores
Most operating systems and execution platforms offer some kind of means for storing and using cryptographic keys in a secure manner.
Examples of these include Android Keystore, Java Keystore, Apple Secure Enclave, and Windows Keystore. In some cases, these keystores
are backed up by hardware-based security, if such technology is available on the device. Typically, keystores are used for certificate and key
pair management associated with SSL communication.

While such keystores are sufficiently secure, they cannot be considered general-purpose cryptographic libraries. For instance, usually the list
of supported cryptographic algorithms and operations is quite limited. Moreover, in some cases it is not possible to import an existing key into
the keystore. Another important factor to consider is that such keystores are built for a particular target platform, which means that supporting
the same application on multiple platforms will require re-implementing the cryptographic operations on each of them. Because of these
reasons, relying on a platform-specific keystore may be impractical and expensive, depending on the use case.

White Box Cryptography
The objective of white box cryptography is to implement cryptographic primitives in such a way that, within the context of the intended
application, having full access to the cryptographic implementation does not present any advantage for an adversary in
comparison to the adversary working with the implementation as a black box13. In simple terms, white box cryptography is a general-purpose
software implementation of cryptographic algorithms that attempts to hide keys. Since software is easily examinable if the hacker has access
to the device, such software execution environment is called a “white box model”.

Academic Work on White Box Cryptography
The premise of white box cryptography may seem like impossible magic, but university researchers have been studying the problem of
general obfuscation since 2001. Over time, several academic derivatives of white box cryptography have emerged, such as the following:

• Functional encryption (since 2005) combines basic encryption with mathematically forged access control.
• Fully homomorphic encryption (since 2009) enables secure computing with encrypted data on an untrusted cloud server.
• Indistinguishability obfuscation (since 2013) achieves (as well as theoretically possible) general software obfuscation which has

been called “crypto-complete” as a flood of exotic cryptographic applications can be built from indistinguishable obfuscation.

While most of these advanced cryptographic techniques are theoretically possible, they are practically infeasible as they require enormous
amounts of computational resources to solve even the simplest problems. These are active areas of investigation, and researchers are
making continual progress. However, it may be decades before some of these techniques are practical.

8

Understanding & Protecting Against Cryptographic Key Attacks

Figure 3: Unobfuscated implementation
versus white box implementation

How White Box Cryptography Works
To implement white box cryptographic primitives it is
necessary to provide functionality equivalent to the
standard algorithms without revealing the intermediate
values arising within the usual algorithms. One general
technique is to encode and thereby obscure inputs,
outputs, and intermediate values. Another technique is
to rearrange steps into less revealing combined
operations.

As illustrated in this figure, in a “regular” or
unobfuscated implementation, the secret keys and
execution logic are clearly distinguishable and easy to
tamper with. In a white box implementation, the
internal data and execution flow are obscure and
inseparable — the keys cannot be easily extracted and
making any modifications to the code can result in
breaking the entire executable. One way this is
frequently done in white box implementations is to
move computations into tables which can be easily
randomized and are difficult to reverse engineer.

Choosing the Right Key Protection Technique
Generally speaking, software-based security cannot be considered as safe as dedicated purpose-built security hardware, and
computations performed within a software white box environment will always be slower. However, the obvious advantage of white box
software algorithms over their black box hardware counterparts is that they can be deployed on devices without hardware support. White
box software algorithms can support the same functionality on any platform, and they can be easily and cost-effectively upgraded if
vulnerabilities are found. In some cases, it may be desirable to have both software and hardware protection in place to provide defense in
depth. All these factors must be carefully evaluated when choosing the desired key protection technique.

Zimperium's zKeyBox is the world’s leading implementation of white box cryptography algorithms that provides a robust solution to the
problem of securing keys in software and ensures protection against the vast majority of key attacks including static and dynamic analysis
as well as side-channel attacks.

The subsequent part of this white paper will be focusing on the zKeyBox library and how the particular features address various threats
aimed at cryptographic keys and other inner parts of cryptographic algorithms.

77%

Understanding & Protecting Against Cryptographic Key Attacks

9

Zimperium's
zKeyBox
zKeyBox is a cross-platform library that provides advanced white box implementation of a number of cryptographic algorithms. It
allows standard cryptographic functions to be performed without the keys ever being in the clear. Because of its strong protection design,
zKeyBox is extremely difficult to reverse engineer and tamper with. zKeyBox employs patented technologies and has successfully
passed a number of third-party security audits.

In the case of existing software applications that already have cryptographic modules in place, zKeyBox can simply replace those modules
in code. Therefore, the zKeyBox-protected application will be functionally equivalent to the original application and ensure robust protection
of its keys.

The general procedure for applying zKeyBox protection is as follows:

1.Link the static zKeyBox library with the target application that you want to protect.

2.Change the code that uses the low-level cryptographic functions so that they employ the zKeyBox API.

3.Build and deploy your zKeyBox-protected application.

Figure 4: Applying zKeyBox protection to the target application

Understanding & Protecting Against Cryptographic Key Attacks

10

Supported algorithms

Encryption

Decryption

Signing

Verification

Key generation

Key wrapping

Key unwrapping

Key agreement

Digests (hashing) of keys

Key derivation

Supported platforms

Android

iOS

tvOS

macOS

Windows

PlayStation

glibc/Linux

uClibc/Linux

musl/Linux

MinGW

Main Features
zKeyBox provides white box implementation for a number of industry’s standard algorithms that can be run on a vast array of target
platforms as can be seen in the following tables:

The most popular ciphers such as AES, RSA, ECC, DES, and Speck are supported. Since the exact list of supported algorithms and
target platforms is constantly changing, please consult the zKeyBox User Guide or contact your Zimperium account executive for the
latest set of supported functions and platforms.

Security Aspects
In this section, we touch upon some of the generic security
characteristics of zKeyBox.

Encrypted Domain
An encrypted domain is a part of a program where all the data is
stored in encrypted form and all the operations are obfuscated. Due
to the execution speed trade-off involved (since obfuscating code
necessarily results in a performance penalty), an encrypted domain is
typically never used for an entire program, but rather just for its crucial
parts such as the cryptographic algorithms and the program code
that handles the keys.

zKeyBox provides a complete encrypted domain for working with
cryptographic keys. The library exposes a set of API functions to the
calling application in such a way that there is no possibility (and no
need) for the application or hacker to obtain the keys in plaintext.

Computation in an encrypted domain is a central feature of zKeyBox.
This means that even when a cryptographic algorithm is being
executed, the keys and other data it is working with are never
revealed in plaintext. In addition, any attempts to tamper with the
algorithm or separate keys from it will most likely result in crashing
the application.

11

Understanding & Protecting Against Cryptographic Key Attacks

Obfuscation
zKeyBox hides the secret keys and the execution flow of the cryptographic algorithms. It is nearly impossible to reverse engineer the logic
and trace the logical steps. Since the standard debugging tools yield no meaningful statistics to the threat actors analyzing the unique
white box code, the traditional tampering methods are ineffective with zKeyBox.

Therefore, even if there are any theoretical weaknesses discovered in the industry’s cryptographic algorithms implemented by zKeyBox,
the obfuscated nature of the way the library works will greatly encumber the potential attacks or even render them impossible.

Diversification
Software diversification is a method of adding randomization to an executable binary and its input and output data so that various
instances of the same software appear different in every case. Software diversification confounds an attacker’s attempts to exploit
information gained from one deployment to compromise other deployments. It is much harder to develop a universal cracking scheme for
software instances that are diversified, i.e., each software instance must be cracked individually.

Diversification is an integral component of all Zimperium products. zKeyBox in particular, has a two-tier diversification scheme in place.
First, the binary of each zKeyBox instance is generated from a random seed which ensures code diversity, meaning, the binary footprint
of every application that employs the library is unique, rendering creation of universal cracking tools almost impossible. Second, every
zKeyBox instance uses a different pattern for encrypting the keys it saves and loads from the storage (data diversity). This means that the
hacker cannot take the zKeyBox library from one compromised application and use it to decrypt keys from other applications.

Protection against White Box Attacks
The research team behind Secure Key Box is constantly self-testing and improving the product to ensure security against known white
box attacks. One example is the Billet attack, which is probably the best-known attack that can be made against certain types of AES
white box implementations14. The attack depends on certain characteristics to be present in the particular AES white box implementation.
For example, it is assumed the white box implementation looks like a sequence of S-box applications and permutations of the encoded
bytes. The zKeyBox implementation of AES however, does not have the characteristics that allow the specified type of attack to be
applied. Hence, the attack is rendered useless against zKeyBox.

77%

Understanding & Protecting Against Cryptographic Key Attacks

12

Select Use Cases
Tokenized EMV Payment Solution
A typical use case for zKeyBox is to secure parts of a tokenized EMV payment solution on a mobile device. The main functions of such
systems include device provisioning, token provisioning, storage of token data, and token processing.

Device provisioning involves establishing an identity of the mobile device and linking it to the identity of the cardholder within the payment
ecosystem. During this process the device acquires a unique key that is linked with the cardholder identity (as known by the card issuer).
Device provisioning may use a key agreement scheme between device and server, key derivation, a digital signature for authentication,
encryption/decryption for session traffic, as well as secure and device-bound storage of the acquired key. Token provisioning is requesting
and receiving the single-use tokens for later use in payment transactions. During this process, a digital signature is used for authentication,
and encryption and decryption are used for session traffic and protection of token data while in transit and while at rest on the device. Token
processing happens during the payment when the token is used (as a replacement for the PAN card number); it involves decrypting token
data, calculating the authentication value (Retail MAC), and encrypting the modified token data.

As can be seen, a large number of cryptographic operations are involved in this use case. All of these operations are supported by zKeyBox
while ensuring that the involved keys and other secrets are never revealed in the clear. This allows deployment of the payment application on
devices that do not support the hardware-based security environment and on devices where such environment is not available to
developers.

Digital Rights Management System
Global entertainment and media companies have increased their value through innovative global streaming services, programs, live
concerts, daily behind-the-scenes interviews, live sports broadcasts and a variety of music and news events that can be viewed on mobile
devices. More importantly, consumers can now view specific entertainment content on their own devices just about anywhere, including
planes, taxis, and other forms of public transportation. To protect the content from being stolen, digital rights management (DRM) systems
must be in place, and to protect the players’ applications themselves, mobile security application solutions are a necessity.

Because DRM systems involve multiple cryptographic operations and depend on the integrity of cryptographic keys, developers should add
a layer of protection to their DRM applications to prevent hackers from breaking the DRM system or stealing the secret keys. zKeyBox is an
ideal tool for this purpose because it supports all the industry standard cryptographic algorithms used in DRM solutions, and never reveals
cryptographic keys in the clear.

Next Steps

This white paper has presented an in
depth look into Zimperium's zKeyBox.
Our state-of-the art protection
mechanisms will help you shield your
cryptographic keys from attacks and
protect the most important assets for
you and your customers.

Contact us to see how Zimperium can
help you protect your cryptographic
keys, get a demo, start a free trial, or to
learn more.

About Zimperium

 Zimperium secures mobile devices
and mobile applications so they can
safely access sensitive data and
systems. We are an advanced machine
learning-based solution with a privacy
focus, supporting iOS, Android, and
ChromeOS platforms.

Zimperium's Mobile Application
Protection Suite (MAPS) helps
enterprises to build secure and
compliant mobile applications. It is the
only unified solution that combines
comprehensive in-app protection with
centralized threat visibility.

• Our in-app protection includes
application shielding, client-side
runtime application self-protection
(RASP), and anti-malware
techniques.

• Our visibility enables continuous
application security testing (AST)
during development and runtime
visibility into threats and attacks.

Learn more at: zimperium.com
Contact us at: 844.601.6760 | info@zimperium.com

Zimperium, Inc
4055 Valley View, Dallas, TX 75244

Sources

https://www.documentcloud.org/documents/3010178-Volkswagen-amp-HiTag2-Keyless-Entry-System.html

https://marcan.st/uploads/25c3_console_hacking

G. Lowe, “An attack on the Needham-Schroeder public key authentication protocol”, Information Processing Letters, Volume 56,
Issue 3, 1995

S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4”, Selected Areas in Cryptography. SAC
2001. Lecture Notes in Computer Science, vol 2259, 2001

http://heartbleed.com

A. Shamir, N. van Someren, “Playing Hide and Seek With Stored Keys”, Financial Cryptography. FC 1999. Lecture Notes in
Computer Science, vol 1648, 1998

https://github.com/mmozeiko/aes-finder

https://tools.ietf.org/html/rfc2631

P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”, CRYPTO '99 Proceedings of the 19th Annual International Cryptology,
Conference on Advances in Cryptology, 1999

M. Hutter, J. Schmidt, “The Temperature Side Channel and Heating Fault Attacks”, CARDIS, 2013

J. A. Halderman et al, “Lest We Remember: Cold Boot Attacks on Encryption Keys”, Proc. 17th USENIX Security Symposium
(Sec ’08), 2008

https://meltdownattack.com

B. Wyseur, “White Box Cryptography”, PhD thesis, 2009

O. Billet, H. Gilbert, C. Ech-Chatbi, “Cryptanalysis of a White Box AES Implementation”, Selected Areas in Cryptography. SAC

1

2

3

4

5

6

8

9

10

7

11

12

13

14

2004. Lecture Notes in Computer Science, vol 3357, 2005

https://www.zimperium.com
https://www.zimperium.com/contact-us

	Blank Page

